viernes, 6 de septiembre de 2013

LAS FIBRAS DE (C.V.) Y LA NANOTECNOLOGIA


LA FIBRA DE CARBON (C.)






La fibra de carbono es una fibra sintética constituida por finos filamentos de 5–10 µm de diámetro y compuesto principalmente por carbono.1 Cada filamento de carbono es la unión de muchas miles de fibras de carbono. Se trata de una fibra sintética porque se fabrica a partir del poliacrilonitrilo. Tiene propiedades mecánicas similares al acero y es tan ligera como la madera o el plástico. Por su dureza tiene mayor resistencia al impacto que el acero.

ESTRUTURA

La estructura atómica de la FIBRA DE CARBONO es similar a la del grafito, consistente en láminas de átomos de carbono ordenados en un patrón regular hexagonal. La diferencia está en la manera en que esas hojas se entrecruzan. El grafito es un material cristalino en donde las hojas se sitúan paralelamente unas a otras de manera regular. Las uniones químicas entre las hojas es relativamente débil, lo que proporciona al grafito su blandura y brillo característicos. La fibra de carbono es un material amorfo: las láminas de átomos de carbono se colocan al azar, apretadas o juntas. Esta integración de las láminas de carbono es responsable de su alta resistencia. La densidad de la fibra de carbono es de 1.750 kg/m3. Es conductor eléctrico y de alta conductividad térmica. Al calentarse, un filamento de carbono se hace más grueso y corto. Su densidad lineal (masa por unidad de longitud, con la unidad * 1 tex = 1 g/1000 m) o por el número de filamentos por yarda, en miles.

PROPIEDADES



•Muy Elevada resistencia mecánica, con un módulo de elasticidad elevado. •Baja densidad, en comparación con otros elementos como por ejemplo el acero. •Elevado precio de producción. •Resistencia a agentes externos. •Gran capacidad de aislamiento térmico. •Resistencia a las variaciones de temperatura, conservando su forma, sólo si se utiliza matriz termoestable •El uso de materiales termoestables dificulta el proceso de creación de la pieza final, ya que se requiere de un complejo utillaje especializado, como el horno autoclave.

LA FIBRA DE VIDRO (V.)

La fibra de vidrio es un material que consta de fibras numerosas y extremadamente finas de vidrio. A lo largo de la historia los vidrieros ensayaron la fibra de vidrio, pero la manufactura masiva de este material sólo fue posible con la invención de máquinas herramienta más refinadas. En 1893, Edward Drummond Libbey exhibió un vestido en la Exposición Universal de Chicago que tenía fibra de vidrio con filamentos del diámetro y la textura de una fibra de seda. Fue usado por primera vez por Georgia Cayvan, una actriz de teatro muy conocida en aquella época. Las fibras de vidrio también se pueden formar naturalmente y se les conoce como "Cabellos de Pelé". Sin embargo la lana de vidrio a la que hoy se llama comúnmente fibra de vidrio no fue inventada sino hasta 1938 por Russell Games Slayter en la Owens-Corning como un material que podría ser usado como aislante en la construcción de edificios. Fue comercializado bajo el nombre comercial Fiberglas, que se convirtió desde entonces en una marca vulgarizada en países de habla inglesa.

FORMACIÓN DE LA FIBRA




La fibra de vidrio se conforma de hebras delgadas hechas a base de sílice o de formulaciones especiales de vidrio, extruidas a modo de filamentos de diámetro diminuto y aptas para procesos de tejeduría. La técnica de calentar y elaborar fibras finas a partir de vidrio se conoce desde hace milenios; sin embargo, el uso de estas fibras para aplicaciones textiles es mucho más reciente: sólo hasta ahora es posible fabricar hebras y fibras de vidrio almacenadas en longitudes cortadas y estandarizadas. La primera producción comercial de fibra de vidrio ocurrió en 1936; en 1938 Owens-Illinois Glass Company y Corning Glass Works se unieron para formar la Owens-Corning Fiberglas Corporation. Cuando ambas compañías se unieron para producir y promover la fibra de vidrio, introdujeron al mercado filamentos continuos de fibra de vidrio.1 Owens-Corning continúa siendo el mayor productor de fibra de vidrio en el mercado actual.2 Los tipos de fibra de vidrio usados más comúnmente son las de vidrio clase E (E-glass: vidrio de alumino-borosilicato con menos de 1% peso/peso de óxidos alcalinos, principalmente usada para GRP), pero también se usan las clases A (A-glass: vidrio alcali-cal con pocos o ningún óxido de boro), clase E-CR (E-CR glass: de silicato álcali-cal con menos de 1% peso/peso de óxidos alcalinos, con alta resistencia a los ácidos), clase C (C-glass: vidrio álcali-cal con alto contenido de óxido de boro, usadas por ejemplo en fibras de vidrio con filamentos cortos), clase D (D-glass: vidrio de borosilicato con una constate dieléctrica alta), clase R (R-glass: vidrio de alumino silicatos sin MgO ni CaO con altas prestaciones mecánicas) y la clase S (S-glass: vidrio de alumino silicatos sin CaO pero con alto contenido de MgO con alta resistencia a la tracción).

QUÍMICA DE LA FIBRA DE VIDRIO

La fibra de vidrio útil para tejido tiene como base el compuesto sílice, SiO2. En su forma pura el dióxido de silicio se comporta como polímero (SiO2) n. Es decir, no tiene un punto de fusión verdadero pero se suaviza a 1200 °C, punto en el que comienza a descomponerse y a 1713 °C la mayoría de las moléculas presentan libertad de movimiento. Si el vidrio ha sido extruido y enfriado de forma rápida desde esta temperatura, es imposible obtener una estructura ordenada.4 En su estado de polímero se forman grupos de SiO4 que están configurados con estructura tetraédrica con el átomo de silicio en el centro, y cuatro átomos de oxígeno en las puntas. Estos átomos luego forman una red de enlaces en las esquinas que comparten los átomos de oxígeno. Los estados vítreos y cristalinos de la sílice (vidrio y cuarzo) tienen niveles energéticos similares en sus bases moleculares, lo que implica que en su forma vidriosa es extremadamente estable; en orden de reducir la cristalización, debe ser calentado a temperaturas superiores a los 1200 °C por períodos prolongados de tiempo.

PROPIEDADES



TÉRMICAS Las fibras de vidrio son buenos aislantes térmicos debido a su alto índice de área superficial en relación al peso. Sin embargo, un área superficial incrementada la hace mucho más vulnerable al ataque químico. Los bloques de fibra de vidrio atrapan aire entre ellos, haciendo que la fibra de vidrio sea un buen aislante térmico, con conductividad térmica del orden de 0.05 W/(m•K)7 TENSIÓN Tipo de Fibra Tensión de rotura (MPa)8 Esfuerzo de Compresión (MPa) Densidad (g/cm3) Dilatación térmica µm/(m°C) T de ablandamiento (°C) Precio dólar/kg Vidrio clase E 3445 1080 2.58 5.4 846 ~2 Vidrio clase S-2 4890 1600 2.46 2.9 1056 ~20 La tensión del vidrio usualmente se comprueba y reporta para fibras "vírgenes" o prístinas—aquellas que se acaban de fabricar. Las fibras recién hechas, más delgadas, son las más fuertes debido a que son más dúctiles. Cuanto más se raye su superficie, menor será la tenacidad resultante.5 Debido a que el vidrio presenta una estructura amorfa, sus propiedades son isotrópicas, es decir, son las mismas a lo largo y ancho de la fibra (a diferencia de la fibra de carbono, cuya estructura molecular hace que sus propiedades sean diferentes a lo largo y ancho, es decir, anisotrópicas).4 La humedad es un factor importante para la tensión de rotura; puede ser adsorbida fácilmente y causar rupturas y defectos superficiales microscópicos, disminuyendo la tenacidad.

PROCESOS DE FABRICACIÓN

FUNDICIÓN Hay dos tipos principales de fabricación de fibra y dos tipos de resultados. La primera, es fibra hecha a partir de un proceso de fundición directo y la segunda un proceso de refundición de canicas. Ambas comienzan con el material en su forma sólida; los materiales se combinan y se funden en un horno. Luego, para el proceso con canicas, el material fundido se separa mediante tensión y se enrolla en canicas que están enfriadas y empacadas. Las canicas se llevan a las instalaciones donde se elabora la fibra donde se insertan dentro de contenedores para refundirse; el vidrio fundido se extruye en espirales roscados (similares a insertos roscados) para conformar la fibra. En el proceso de fundición directo, el vidrio derretido en el horno va directamente a la formación de los insertos.

FORMACIÓN

La placa donde se enroscan los insertos es el componente principal en el maquinado de la fibra. Consiste en una placa de metal caliente en la que están situadas las boquillas mediante las cuales se hará fibra a partir de los insertos introducidos en ellas. Casi siempre esta placa está hecha de una aleación de platino y rodio por motivos de durabilidad. El platino se usa debido a que el vidrio fundido tiene una afinidad natural para humectarlo. Las primeras placas que se usaban para este propósito eran 100% de platino y el vidrio las penetraba tan fácilmente que empapaba la placa y se acumulaba como residuo a la salida de las boquillas. También se usa esta aleación platino-rodio debido al costo del platino y su tendencia a desgastarse con facilidad; en el proceso de fundición directa, las placas también cumplen la función de colectar el vidrio fundido. Se usan ligeramente calientes para mantener el vidrio a una temperatura correcta, adecuada para la formación de la fibra. En el proceso de fundición de canicas, la placa actúa más como un distribuidor de calor, en el sentido en que funde la mayoría del material.

SALUD

La fibra de vidrio se hizo muy popular desde que se descubrió que los asbestos son causantes de cáncer, y fueron eliminados de muchos productos. Sin embargo, la seguridad de la fibra de vidrio también se puso en duda debido a que investigaciones muestran que la composición de este material (tanto los asbestos como la fibra de vidrio son fibras de silicato) puede causar una toxicidad similar a la de los asbestos.

USOS

El uso normal de la fibra de vidrio incluye recubrimientos, aislamiento térmico, aislamiento eléctrico, aislamiento acústico, como refuerzo a diversos materiales, palos de tiendas de campaña, absorción de sonido, telas resistentes al calor y la corrosión, telas de alta resistencia, pértigas para salto con garrocha, arcos y ballestas, tragaluces translúcidos, partes de carrocería de automóviles, palos de hockey, tablas de surf, cascos de embarcaciones, y rellenos estructurales ligeros de panal (técnica de armado con honeycomb). Se ha usado para propósitos médicos enférulas. La fibra de vidrio es ampliamente usada para la fabricación de tanques y silos de material compuesto.

IMPORTANCIA DEL RECICLAJE DEL VIDRIO PARA FABRICAR FIBRA



Los fabricantes de fibra de vidrio para aislamiento pueden usar vidrio reciclado. La fibra que produce Owens Corning es en un 40% procedente de vidrio reciclado. En 2009 esta compañía comenzó un programa de reciclaje de vidrio para enviar residuos de vidrio reciclado desde Kansas City a la planta de Owens Corning para ser usado como materia prima para fabricar fibra de vidrio clase A.

LA NANOTECNOLOGÍA

La nanotecnología es un campo de las ciencias aplicadas dedicado al control y manipulación de la materia a una escala menor que un micrómetro, es decir, a nivel de átomos y moléculas (nanomateriales). Lo más habitual es que tal manipulación se produzca en un rango de entre uno y cien nanómetros. Se tiene una idea de lo pequeño que puede ser un nanobot sabiendo que un nanobot de unos 50 nm tiene el tamaño de 5 capas de moléculas o átomos -depende de qué esté hecho el nanobot-. Nano es un prefijo griego que indica una medida (10-9 = 0,000 000 001), no un objeto; de manera que la nanotecnología se caracteriza por ser un campo esencialmente multidisciplinar, y cohesionado exclusivamente por la escala de la materia con la que trabaja.

Definición

La nanotecnología comprende el estudio, diseño, creación, síntesis, manipulación y aplicación de materiales, aparatos y sistemas funcionales a través del control de la materia a nanoescala, y la explotación de fenómenos y propiedades de la materia a nanoescala. Cuando se manipula la materia a escala tan minúscula, presenta fenómenos y propiedades totalmente nuevas. Por lo tanto, los científicos utilizan la nanotecnología para crear materiales, aparatos y sistemas novedosos y poco costosos con propiedades únicas.

HISTORIA

El ganador del premio Nobel de Física de 1965, Richard Feynman, fue el primero en hacer referencia a las posibilidades de la nanociencia y la nanotecnología en el célebre discurso que dio en el Caltech (Instituto Tecnológico de California) el 29 de diciembre de 1959, titulado En el fondo hay espacio de sobra (There's Plenty of Room at the Bottom). Otras personas de esta área fueron Rosalind Franklin, James Dewey Watson y Francis Crick quienes propusieron que el ADN era la molécula principal que jugaba un papel clave en la regulación de todos los procesos del organismo, revelando la importancia de las moléculas como determinantes en los procesos de la vida. Pero estos conocimientos fueron más allá, ya que con esto se pudo modificar la estructura de las moléculas, como es el caso de los polímeros o plásticos que hoy en día encontramos en nuestros hogares. Pero hay que decir que a este tipo de moléculas se les puede considerar “grandes”. Hoy en día la medicina tiene más interés en la investigación en el mundo microscópico, ya que en él se encuentran posiblemente las alteraciones estructurales que provocan las enfermedades, y no hay que decir de las ramas de la medicina que han salido más beneficiadas como es la microbiología, inmunología, fisiología; han surgido también nuevas ciencias como la Ingeniería Genética, que ha generado polémicas sobre las repercusiones de procesos como la clonación o la eugenesia.

INVERSIÓN

Algunos países en vías de desarrollo ya destinan importantes recursos a la investigación en nanotecnología. La nanomedicina es una de las áreas que más puede contribuir al avance sostenible del Tercer Mundo, proporcionando nuevos métodos de diagnóstico y cribaje de enfermedades, mejores sistemas para la administración de fármacos y herramientas para la monitorización de algunos parámetros biológicos. Alrededor de cuarenta laboratorios en todo el mundo canalizan grandes cantidades de dinero para la investigación en nanotecnología. Unas trescientas empresas tienen el término “nano” en su nombre, aunque todavía hay muy pocos productos en el mercado.

NANOTECNOLOGÍA AVANZADA


La nanotecnología avanzada, a veces también llamada fabricación molecular, es un término dado al concepto de ingeniería de nanosistemas (máquinas a escala nanométrica) operando a escala molecular. Se basa en que los productos manufacturados se realizan a partir de átomos. Las propiedades de estos productos dependen de cómo estén esos átomos dispuestos. Así por ejemplo, si reubicamos los átomos del grafito (compuesto por carbono, principalmente) de la mina del lápiz podemos hacer diamantes (carbono puro cristalizado). Si reubicamos los átomos de la arena (compuesta básicamente por sílice) y agregamos algunos elementos extras se hacen los chips de un ordenador.




TRABAJO ELABORADO POR:



ELIANA MARTINEZ
KATHERINE ESTUPIÑAN